
1

Finite-state machine for turn-based

combat in video games

Studio Game Extended 2019

Written by Dominic Lüönd, Digital Ideation, 3rd semester, 2019

Lecturers Dragica Kahlina, Sebastian Hollstein

dominic.lueoend@stud.hslu.ch

2

1. Abstract ... 3

2. Keywords .. 3

3. Introduction ... 3

4. Categorization of finite-state machines ... 3

Hard-coded finite-state machines .. 3

Class-based finite-state machines .. 4

Hierarchical finite-state machines ... 4

Unity ScriptableObjects finite-state machines .. 4

5. Implementation for turn-based Combat .. 5

6. Technical Demo .. 5

7. Conclusion .. 6

8. Bibliography ... 7

3

1. Abstract
In this paper I describe a modular reusable solution for utilizing finite-state machines in turn-based games.

This was achieved through literature research and the development of a prototype.

2. Keywords
finite-state machine, finite-state automaton, artificial intelligence, turn-based games, turn-based combat.

3. Introduction
I have been working on a turn-based RPG for several months now. I realized early on, that a solution to

manage states was needed. After diving head-first into development, it became obvious, that my system was

lacking structure and thus made progress very difficult. For this reason, I decided to redo this in the studio-

module Studio Game Extended 2019, which took place for eight days.

16.10 17.10 18.10 23.10 24.10 25.10 26.10 30.11 31.11

Research Research

Konzeption

Definition

States

'Competitor'

Analysis

Prototype

Implementation Implementation Implementation Implementation Preperation for

Presentation

Presentation

4. Categorization of finite-state machines
There are multiple approaches on how to implement a finite-state machine. In Chapter 5.3 of Artificial

Intelligence for Games, Millington, I., Funge, J. (2009) there are three primary ways to do this. Through research

I came across Lecture 03 – Finite State Machines, Edirlei Soares de Lima (2018) which brought a fourth solution

to my attention. In this solution ScriptableObjects in Unity are utilized to achieve the desired state-

management.

Hard-coded finite-state machines

Hard-coded state machines are easy to write but are exceptionally

difficult to maintain, since complex finite-state machines require

thousands of lines of code.

There certainly are rare situations where the speed of this solution

makes it a formidable option, though the complexity must be

relatively low.

public class HardCodedStateMachine :
MonoBehaviour {
 public State state;

 private void Update() {
 switch (state) {
 case State.OutOfCombat:
 break;
 case State.PlayerChoice:
 break;
 case State.EnemyChoice:
 break;
 case State.EndCombat:
 break;
 default:
 break;
 }
 }
}
public enum State {
 OutOfCombat, PlayerChoice,
EnemyChoice, EndCombat }

Figure 1 - Hard coded state machine example

4

Class-based finite-state machines

A class-based approach increases the flexibility of the

finite-state machine but reduces its performance due to

and increased number of method calls.

As is visible in Figure 2, we work with independent state-

objects, each with their own logic. Those instantiations of

the ‘state’-class are then “linked” through transitions,

which in turn require a condition to be met, before the

current state changes.

Hierarchical finite-state machines

The hierarchical approach to finite-state machines

reduces the complexity of the finite-state machine by

breaking it down into multiple smaller state machines.

Other than that, this approach is very similar to the class-

based method.

Unity ScriptableObjects finite-state machines

In Unity, a ScriptableObject is a class that allows you to

store data and execute code independent from script

instances. Once a ScriptableObject-derived class has been

defined, it is possible to use the CreateAssetMenu attribute

to easily create custom assets of the class directly in the

editor.

Figure 2 - Class-based state machine visualization

Figure 3 - Hierarchical finite-state machine example

Figure 4 - Newly created AssetMenu directly in Unity Editor

5

5. Implementation for turn-based Combat
My specific implementation started with defining the states which I require. I came up with the following:

OutOfCombat, StartCombat, PlayerTurn, EnemyTurn, TargetSelection, EndCombat. I am not entirely sure if this

is sufficient or if some could even be left out (like EndCombat and instead transition directly to OutOfCombat)

but for now this seems like a reasonable approach.

A possible extension of this implementation are the blue states and transitions which would make the enemy

behavior more clearly separated.

6. Technical Demo
 As a tool for my presentation as well as further work on the system, I

created a small demo featuring a player, enemies and obstacles

made from geometric primitives.

The player as well as the enemies are Characters and possess

attributes such as Action Points, which they require during turn-

based combat to perform actions.

While the current State is set to OutOfCombat, the player can move

around without consuming Action Points. Once he is near enemies

though, the finite-state machine will SetupCombat and thus create a

turn order, aswell as restrict unpermitted movement of the player.

According to this turn order, the player and enemies take turns

utilizing their Action Points until either side has no more combatants.

OutOfCombat

StartCombat PlayerTurn

EndCombat

EnemyTurn

ChaseCharacter AttackCharacter

TargetSelection

State

Transition

Figure 6 - Navmesh and playarea

Figure 7 - Editor during OutOfCombat

Figure 8 - Editor after assigning turn order

Figure 5 - Visualization of my finite-state machine

6

7. Conclusion
The two main concepts I’ve grasped are firstly; the importance of research prior to development. I spent less

time overall on this project than I did on my previous attempt and achieved a lot more. And secondly; detailed

conceptual work prior to development tremendously reduce the amounts of standstills during development.

These insights were very important for me personally and for my progress as an aspiring game developer.

7

8. Bibliography
Artificial Intelligence for Games, Millington, I., Funge, J. (2009)

Game Programming Gems 1, Mark DeLoura (2000)

Game Programming Gems 5, Kim Pallister (2005)

Lecture 03 – Finite State Machines, Edirlei Soares de Lima (2018)

http://edirlei.3dgb.com.br/aulas/game-ai/GAME_AI_Lecture_03_Finite_State_Machines_2018.pdf

Figure 1 - Hard coded state machine example ... 3

Figure 2 - Class-based state machine visualization ... 4

Figure 3 - Hierarchical finite-state machine example ... 4

Figure 4 - Newly created AssetMenu directly in Unity Editor .. 4

Figure 5 - Visualization of my finite-state machine ... 5

Figure 6 - Navmesh and playarea ... 5

Figure 7 - Editor during OutOfCombat ... 5

Figure 8 - Editor after assigning turn order ... 5

https://d.docs.live.net/ed9ce1aa4e069587/__OneNote/Finite%20State%20Machine%20for%20Turn.docx#_Toc23698366
https://d.docs.live.net/ed9ce1aa4e069587/__OneNote/Finite%20State%20Machine%20for%20Turn.docx#_Toc23698367
https://d.docs.live.net/ed9ce1aa4e069587/__OneNote/Finite%20State%20Machine%20for%20Turn.docx#_Toc23698368
https://d.docs.live.net/ed9ce1aa4e069587/__OneNote/Finite%20State%20Machine%20for%20Turn.docx#_Toc23698369
https://d.docs.live.net/ed9ce1aa4e069587/__OneNote/Finite%20State%20Machine%20for%20Turn.docx#_Toc23698370
https://d.docs.live.net/ed9ce1aa4e069587/__OneNote/Finite%20State%20Machine%20for%20Turn.docx#_Toc23698371
https://d.docs.live.net/ed9ce1aa4e069587/__OneNote/Finite%20State%20Machine%20for%20Turn.docx#_Toc23698372
https://d.docs.live.net/ed9ce1aa4e069587/__OneNote/Finite%20State%20Machine%20for%20Turn.docx#_Toc23698373

